Miniatury matematyczne 59 Pitagoras jego trójkąty i trójki

Aksjomat
Miniatury matematyczne 59 Pitagoras jego trójkąty i trójki
Wysyłka:
1-3 dni robocze + czas dostawy
Sugerowana cena
21,56 PLN
Nasza cena
19,66 PLN
Oszczędzasz 9%
Najniższa cena w ciągu ostatnich 30 dni: 15,13 zł

Na tegoroczny zeszyt miniatur dla liceów złożyły się cztery artykuły. Pobieżne przewertowanie książeczki może sprawić wrażenie, że zbiór został zdominowany przez geometrię: w tytule pierwszej miniatury mamy Pitagorasa i trójkąty, słowo geometria pojawia się aż dwukrotnie w tytule drugiej. Tytuł ostatniej miniatury może nie kojarzyć się z geometrią, ale wystarczy przerzucić kartki, aby zobaczyć wykresy podobne do tych, jakie pojawiają się na lekcjach geometrii. Jednak pierwsze wrażenie jest złudne. W rzeczywistości materiał zawarty w miniaturach okazuje się być bliższy arytmetyce niż geometrii. Miniatura pierwsza jest połączeniem swego rodzaju eseju o Pitagorasie z przedstawieniem trójek pitagorejskich. Geometrycznie rzecz biorąc, szukamy wszystkich trójkątów prostokątnych o bokach całkowitych. Ale zarówno odpowiedź jak i metody służące jej uzasadnieniu są typowo arytmetyczne. W istocie bowiem poszukujemy wszystkich całkowitych rozwiązań równania Pitagorasa x2 + y2 = z2. Miniatura druga traktuje o geometrii kartki w kratkę. Głównym obiektem zainteresowania są tu tzw. wielokąty kratowe, czyli wielokąty, które można tak umieścić na kartce zeszytu w kratkę, aby wierzchołki leżały w punktach przecięcia linii tworzących kratki. Autor stara się przekonać Czytelnika, że stanowią one pomost między arytmetyką i geometrią. Z jednej strony bowiem do ich analizy niezbędne są metody arytmetyczne. Z drugiej strony, przy ich pomocy można pewne fakty czysto arytmetyczne udowodnić geometrycznie. Zauważmy, że trójkąty pitagorejskie z pierwszej miniatury są pewnymi szczególnymi trójkątami kratowymi. Z drugiej strony, równanie Pitagorasa zadaje w przestrzeni pewien stożek i poszukiwanie całkowitych rozwiązań tego równania to w istocie poszukiwanie punktów kratowych na tej powierzchni. Miniatura trzecia przenosi nas w świat algebry. Ucząc się matematyki, z algebrą spotykamy się po raz pierwszy, gdy pewne konkretne, ale na razie nieznane liczby zastępujemy literami. Oswajając się z rachunkiem na ?literkach?, zaczynamy rozumieć wzory algebraiczne jako ogólne prawa rządzące rachunkiem na liczbach. Poznając nowe pojęcia, piszemy analogiczne wzory, w których litery mogą zastępować już nie tylko liczby, ale również wektory, funkcje itp. W kolejnym etapie ? przynajmniej intuicyjnie ? zaczynamy traktować wyrażenia algebraiczne jako samoistne obiekty, na których możemy prowadzić operacje arytmetyczne. Autorka zaprasza Czytelnika do zrobienia następnego kroku, w którym symbolami zostają oznaczone już nie tylko obiekty działań, ale także same działania. Pozwala to dostrzec analogie pomiędzy z pozoru całkiem różnymi ?światami? ( na przykład, co łączy dodawanie liczb rzeczywistych i składanie funkcji wzajemnie jednoznacznych). Prowadzi to do abstrakcyjnych struktur algebraicznych (grup, pierścieni i ciał). Pozornie miniatura ta całkowicie wyłamuje się z nurtu geometrycznego, ale w rzeczywistości ma znacznie więcej wspólnego z geometrią, niżby to na pierwszy rzut oka wynikało. Istotnym źródłem idei prowadzących do pojęcia grupy były grupy symetrii obiektów geometrycznych. Kodą zamykającą całość jest zaledwie kilkustronicowa miniatura o twierdzeniu Erdosa i Mordella. Samo twierdzenie jest pięknym i elementarnym rezultatem z geometrii trójkąta i aż dziw bierze, że musiało czekać na swoje odkrycie aż do lat trzydziestych XX wieku. Niespodziewanie miniatura ta wpasowuje się w ciąg opowiadań o związkach arytmetyki i geometrii, lecz tym razem łącznikiem są nie rozważane obiekty matematyczne, lecz ludzie. Z dwóch wymienionych matematyków Paul Erdos jest znacznie lepiej znany i to jemu autorzy poświęcili kilka słów. O związkach autora dowodu, Louisa Mordella, z arytmetyką napomyka zaledwie przypis. Mordell interesował się punktami wymiernymi (czyli punktami o współrzędnych wymiernych) na pewnych specjalnych krzywych zwanych krzywymi eliptycznymi. (Na marginesie, krzywe te wyróżniają się tym, że na ich punktach można w naturalny sposób zadać strukturę grupy . . . ). Pracując nad tym zagadnieniem postawił hipotezę udowodnioną w latach osiemdziesiątych XX w. przez Gerarda Faltingsa, że na dostatecznie ogólnych krzywych liczba punktów wymiernych jest skończona. Z kolei dowód Faltingsa utorował drogę dowodowi wielkiego twierdzenia Fermata, które mówi, że jeśli w równaniu Pitagorasa zamienimy kwadraty wyższymi potęgami, to nowe równanie nie będzie miało innych rozwiązań całkowitych jak oczywiste rozwiązanie zerowe. Ten powrót do Pitagorasa zamyka koło opowieści.

Szczegóły

  • Rok wydania: 2020
  • Format: 16.5x24.0cm
  • Oprawa: Miękka
  • Tytuł: Miniatury matematyczne 59 Pitagoras jego trójkąty i trójki
    Autor: Mieczysław Mentzen, Tomasz Mentzen
    Wydawnictwo: Aksjomat
    Seria: Miniatury matematyczne
    ISBN: 9788364660382
    Kategoria: Podręczniki
    Przedmiot: Matematyka
    Typ: Testy
    Języki: polski
    Rok wydania: 2020
    Ilość stron: 68
    Format: 16.5x24.0cm
    Oprawa: Miękka
    Waga: 0.158 kg

    Recenzje