Praktyczne uczenie maszynowe

Wydawnictwo Naukowe PWN
Praktyczne uczenie maszynowe
Wysyłka:
Niedostępna
Sugerowana cena
112,10 PLN
Nasza cena
101,90 PLN
Oszczędzasz 10%
Najniższa cena w ciągu ostatnich 30 dni: 90,21 zł

Ostatnia dekada to czas bezprecedensowego rozwoju sztucznej inteligencji ? nie tylko przełomowych badań nad algorytmami uczenia maszynowego, ale również coraz powszechniejszego stosowania inteligentnych maszyn w najróżniejszych dziedzinach naszego życia. Rozwój ten ogranicza niewystarczająca liczba specjalistów, łączących znajomość modelowania danych (przygotowania danych i zasad działania algorytmów uczenia maszynowego) ze znajomością języków analizy danych, takich jak SQL, R czy Python. Inżynieria danych (ang. data science) to interdyscyplinarna wiedza, której opanowanie wymaga znajomości algebry, geometrii, statystyki, rachunku prawdopodobieństwa i algorytmiki, uzupełnionej o praktyczną umiejętność programowania. Co więcej, sztuczna inteligencja jest przedmiotem intensywnych badań naukowych i samo śledzenie postępów w tej dziedzinie wiąże się z regularnym (codziennym) dokształcaniem. Niniejsza książka łączy w sobie teorię z praktyką. Opisuje rozwiązania kilkunastu typowych problemów, takich jak prognozowanie zysków, optymalizacja kampanii marketingowej, proaktywna konserwacja sprzętu czy oceny ryzyka kredytowego. Ich układ jest celowy ? każdy przykład jest okazją do wyjaśnienia określonych zagadnień, zaczynając od narzędzi, przez podstawy uczenia maszynowego, sposoby oceny jakości danych i ich przygotowania do dalszej analizy, zasady tworzenia modeli uczenia maszynowego i ich optymalizacji, po wskazówki dotyczące wdrożenia gotowych modeli do produkcji. Książka jest adresowana do wszystkich, którzy chcieliby poznać lub udoskonalić: praktyczną znajomość statystki i umiejętność wizualizacji danych niezbędnej do oceny jakości danych; praktyczną znajomość języka SQL, R lub Python niezbędnej do uporządkowania, wstępnego przygotowania i wzbogacenia danych; zasady działania poszczególnych algorytmów uczenia maszynowego koniecznych do ich wyboru i optymalizacji; korzystanie z języka R lub Python do stworzenia, oceny, zoptymalizowania i wdrożenia do produkcji modeli eksploracji danych. Zarówno studenci kierunków informatycznych, jak również analitycy, programiści, administratorzy baz danych oraz statystycy znajdą w książce informacje, które pozwolą im opanować praktyczne umiejętności potrzebne do samodzielnego tworzenia systemów uczenia maszynowego.

Szczegóły

  • Rok wydania: 2020
  • Format: 16.5x23.5cm
  • Oprawa: Miękka
  • Tytuł: Praktyczne uczenie maszynowe
    Autor: Marcin Szeliga
    Wydawnictwo: Wydawnictwo Naukowe PWN
    ISBN: 9788301207625
    Języki: polski
    Rok wydania: 2020
    Ilość stron: 468
    Format: 16.5x23.5cm
    Oprawa: Miękka
    Waga: 0.765 kg

    Recenzje