Statystyka praktyczna w data science
50 kluczowych zagadnień w językach R i Python
Helion
Wysyłka:
1-3 dni robocze + czas dostawy
Sugerowana cena
Nasza cena
52,53 PLN
Oszczędzasz 24%
Najniższa cena w ciągu ostatnich 30 dni: 42,93 zł
Metody statystyczne są kluczowym narzędziem w data science, mimo to niewielu analityków danych zdobyło wykształcenie w ich zakresie. Może im to utrudniać uzyskiwanie dobrych efektów. Zrozumienie praktycznych zasad statystyki okazuje się ważne również dla programistów R i Pythona, którzy tworzą rozwiązania dla data science. Kursy podstaw statystyki rzadko jednak uwzględniają tę perspektywę, a większość podręczników do statystyki w ogóle nie zajmuje się narzędziami wywodzącymi się z informatyki.
To drugie wydanie popularnego podręcznika statystyki przeznaczonego dla analityków danych. Uzupełniono je o obszerne przykłady w Pythonie oraz wyjaśnienie, jak stosować poszczególne metody statystyczne w problemach data science, a także jak ich nie używać. Skoncentrowano się też na tych zagadnieniach statystyki, które odgrywają istotną rolę w data science. Wyjaśniono, które koncepcje są ważne i przydatne z tej perspektywy, a które mniej istotne i dlaczego.
Co ważne, poszczególne koncepcje i zagadnienia praktyczne przedstawiono w sposób przyswajalny i zrozumiały również dla osób nienawykłych do posługiwania się statystyką na co dzień. W książce między innymi: analiza eksploracyjna we wstępnym badaniu danych próby losowe a jakość dużych zbiorów danych podstawy planowania eksperymentów regresja w szacowaniu wyników i wykrywaniu anomalii statystyczne uczenie maszynowe uczenie nienadzorowane a znaczenie danych niesklasyfikowanych
Statystyka: klasyczne narzędzia w najnowszych technologiach! O autorach Peter Bruce jest ekspertem w dziedzinie nauczania statystyki. Prowadzi Institute for Statistics Education, gdzie oferuje setki kursów skierowanych między innymi do naukowców. Dr Andrew Bruce jest głównym analitykiem w Amazonie. Od trzydziestu lat zajmuje się statystyką i nauką o danych, opracowując rozwiązania problemów z wielu branż. Dr Peter Gedeck jest badaczem w Collaborative Drug Discovery. Tworzy algorytmy uczenia maszynowego do przewidywania właściwości substancji stanowiących potencjalne leki.
To drugie wydanie popularnego podręcznika statystyki przeznaczonego dla analityków danych. Uzupełniono je o obszerne przykłady w Pythonie oraz wyjaśnienie, jak stosować poszczególne metody statystyczne w problemach data science, a także jak ich nie używać. Skoncentrowano się też na tych zagadnieniach statystyki, które odgrywają istotną rolę w data science. Wyjaśniono, które koncepcje są ważne i przydatne z tej perspektywy, a które mniej istotne i dlaczego.
Co ważne, poszczególne koncepcje i zagadnienia praktyczne przedstawiono w sposób przyswajalny i zrozumiały również dla osób nienawykłych do posługiwania się statystyką na co dzień. W książce między innymi: analiza eksploracyjna we wstępnym badaniu danych próby losowe a jakość dużych zbiorów danych podstawy planowania eksperymentów regresja w szacowaniu wyników i wykrywaniu anomalii statystyczne uczenie maszynowe uczenie nienadzorowane a znaczenie danych niesklasyfikowanych
Statystyka: klasyczne narzędzia w najnowszych technologiach! O autorach Peter Bruce jest ekspertem w dziedzinie nauczania statystyki. Prowadzi Institute for Statistics Education, gdzie oferuje setki kursów skierowanych między innymi do naukowców. Dr Andrew Bruce jest głównym analitykiem w Amazonie. Od trzydziestu lat zajmuje się statystyką i nauką o danych, opracowując rozwiązania problemów z wielu branż. Dr Peter Gedeck jest badaczem w Collaborative Drug Discovery. Tworzy algorytmy uczenia maszynowego do przewidywania właściwości substancji stanowiących potencjalne leki.
Szczegóły
Podtytuł: 50 kluczowych zagadnień w językach R i Python
Autor: Peter Bruce, Andrew Bruce, Peter Gedeck
Wydawnictwo: Helion
ISBN: 9788328374270
Języki: polski
Rok wydania: 2021
Ilość stron: 296
Format: 238x168x15 mm
Oprawa: Miękka